Influence of the electrostatic charge of lipoprotein particles on the activity of the human plasma phospholipid transfer protein.
نویسندگان
چکیده
The aim of the present study was to determine the effect of the electrostatic charge of lipoproteins on the phospholipid transfer activity of the plasma phospholipid transfer protein (PLTP). Progressive decreases in the PLTP-mediated phospholipid transfer rates were observed when the surface potential of isolated high density lipoproteins (HDL) was either reduced from -11.7 mV down to -15.7 mV by succinylation of apolipoprotein lysyl residues, or increased from -11.6 mV up to -10.9 mV by replacing apolipoprotein (apo) A-I by apoA-II. When succinylated low density lipoprotein (LDL) series with surface potentials ranging between -4.3 mV and -14.3 mV were used, successive increase and decrease in phospholipid transfer rates were observed along the electronegativity scale. When various plasma HDL subfractions with surface potentials ranging from -10.5 mV to -12.5 mV were separated by anion exchange chromatography, PLTP-mediated phospholipid transfer activity increased progressively with HDL electronegativity until maximal lipid transfer rates were reached for a mean HDL surface potential of -11.6 mV. As the electronegativity of plasma HDL subfractions kept increasing beyond the optimal value, a progressive decrease in PLTP activity was observed. Striking parallelism between cholesteryl ester transfer protein (CETP) and PLTP transfer activity curves obtained with each HDL series were noted, and the optimal HDL surface potential values were remarkably similar, approximating -11.6 mV in all the experiments. With isolated plasma LDL subfractions with surface potentials ranging from -3.5 mV to -5.0 mV, a linear rise in PLTP activity was observed. In conclusion, data of the present study indicate that, like CETP, the activity of PLTP is influenced by electrostatic interactions with lipoproteins.
منابع مشابه
Phospholipid transfer protein activity in two cholestatic patients.
CONTEXT Plasma phospholipid transfer protein mediates the transfer of phospholipids from triglyceride-rich lipoproteins, very low density lipoproteins and low density lipoproteins to high density lipoproteins, a process that is also efficient between high density lipoprotein particles. It promotes a net movement of phospholipids, thereby generating small lipid-poor apolipoprotein AI that contai...
متن کامل-high Density Lipoprotein, Apolipoprotein AI, and Phospholipid in Mice Expressing the Human Phospholipid Transfer Protein and Human Apolipoprotein AI Transgenes
Human plasma phospholipid transfer protein (PLTP) circulates bound to high density lipoprotein (HDL) and mediates both net transfer and exchange of phospholipids between different lipoproteins. However, its overall function in lipoprotein metabolism is unknown. To assess the effects of increased plasma levels of PLTP, human PLTP transgenic mice were established using the human PLTP gene driven ...
متن کاملIncreased prebeta-high density lipoprotein, apolipoprotein AI, and phospholipid in mice expressing the human phospholipid transfer protein and human apolipoprotein AI transgenes.
Human plasma phospholipid transfer protein (PLTP) circulates bound to high density lipoprotein (HDL) and mediates both net transfer and exchange of phospholipids between different lipoproteins. However, its overall function in lipoprotein metabolism is unknown. To assess the effects of increased plasma levels of PLTP, human PLTP transgenic mice were established using the human PLTP gene driven ...
متن کاملCholesteryl ester transfer from phospholipid vesicles to human density lipoproteins.
The exchange of cholesteryl esters between different lipoproteins was reported to bae mediated by a protein present in human plasma. In this study wer have examined the movement of cholesteryl ester from unilamellar phospholipid vesicles to high density lipoprotein (HDL). Experimental conditions were establisehd so that vesicles containing egg yolk lecithin and cholesteryl oleatea (molar ratio ...
متن کاملThe Effect of Aluminum, Gallium, Indium- Doping on the Zigzag (5, 0) Boron-Nitride Nanotubes: DFT, NMR, Vibrational, Thermodynamic Parameters and Electrostatic Potential Map with Electrophilicity Studies
Influence of Aluminum, Gallium, Indium- Doping on the Boron-Nitride Nanotubes (BNNTs) investigated with density functional theory (DFT) and Hartreefock (HF) methods. For this purpose, the chemical shift of difference atomic nucleus was studied using the gauge included atomic orbital (GIAO) approch. In the following, structural parameter values, electrostatic potential, thermodynamic parameters,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of lipid research
دوره 39 1 شماره
صفحات -
تاریخ انتشار 1998